skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Luo, Yunqiu Kelly"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Antiferromagnetic spintronics offers the potential for higher-frequency operations and improved insensitivity to magnetic fields compared to ferromagnetic spintronics. However, previous electrical techniques to detect antiferromagnetic dynamics have utilized large, millimeter-scale bulk crystals. In this work, we demonstrate direct electrical detection of antiferromagnetic resonance in structures on the few-micrometer scale using spin-filter tunneling in platinum ditelluride (PtTe2)/bilayer chromium sulfide bromide (CrSBr)/graphite junctions in which the tunnel barrier is the van der Waals antiferromagnet CrSBr. This sample geometry allows not only efficient detection but also electrical control of the antiferromagnetic resonance through spin-orbit torque from the PtTe2electrode. The ability to efficiently detect and control antiferromagnetic resonance enables detailed studies of the physics governing these high-frequency dynamics. 
    more » « less
    Free, publicly-accessible full text available July 31, 2026
  2. Sagnac interferometry can provide a substantial improvement in signal-to-noise ratio compared to conventional magnetic imaging based on the magneto-optical Kerr effect. We show that this improvement is sufficient to allow quantitative measurements of current-induced magnetic deflections due to spin-orbit torque even in thin-film magnetic samples with perpendicular magnetic anisotropy, for which the Kerr rotation is second order in the magnetic deflection. Sagnac interferometry can also be applied beneficially for samples with in-plane anisotropy, for which the Kerr rotation is first order in the deflection angle. Optical measurements based on Sagnac interferometry can therefore provide a cross-check on electrical techniques for measuring spin-orbit torque. Different electrical techniques commonly give quantitatively inconsistent results so that Sagnac interferometry can help to identify which techniques are affected by unidentified artifacts. 
    more » « less
  3. null (Ed.)
    We adapt Sagnac interferometry for magneto-optic Kerr effect measurements of spin-orbit-torque-induced magnetic tilting in thin-film magnetic samples. The high sensitivity of Sagnac interferometry permits for the first time optical quantification of spin-orbit torque from small-angle magnetic tilting of samples with perpendicular magnetic anisotropy (PMA). We find significant disagreement between Sagnac measurements and simultaneously-performed harmonic Hall (HH) measurements of spin-orbit torque on Pt/Co/MgO and Pd/Co/MgO samples with PMA. The Sagnac results for PMA samples are consistent with both HH and Sagnac measurements for the in-plane geometry, so we conclude that the conventional analysis framework for PMA HH measurements is flawed. We suggest that the explanation for this discrepancy is that although magnetic-field induced magnetic tilting in PMA samples can produce a strong planar Hall effect, when tilting is instead generated by spin-orbit torque it produces negligible change in the planar Hall signal. This very surprising result demonstrates an error in the most-popular method for measuring spin-orbit torques in PMA samples, and represents an unsolved puzzle in understanding the planar Hall effect in magnetic thin films. 
    more » « less